
www.manaraa.com

c© 2015 Neelabh S. Gupta

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158312090?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

www.manaraa.com

A WEB-BASED SYSTEM PROGRAMMING LEARNING
ENVIRONMENT

BY

NEELABH S. GUPTA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Computer Engineering

in the College of Engineering of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisers:

Dr. Roy H. Campbell
Dr. Lawrence C. Angrave

www.manaraa.com

ABSTRACT

This thesis introduces a web application designed for students learning sys-

tem programming. The tool developed supports compiling and running C

programs right inside the browser (made possible by a full-featured Linux-

based virtual machine running purely client-side), a full-featured editor de-

signed for beginners writing C programs, ability to search the Linux Man

pages, and more. Short video lectures and exercises are also available which

introduce learners to the C programming language and system programming

concepts. The application has been used successfully by more than 400 stu-

dents for two semesters at the University of Illinois.

In this thesis, the motivation behind developing this application is dis-

cussed, along with its features and possible use cases. A thorough walk-

through of the user interface is given, followed by elaborate details of the

challenges, design, architecture and implementation of the application. The

thesis also briefly analyses the performance and usage of the application.

Subject Keywords: System programming; Computer science education;

Programming environments; Online learning; Courseware; C programming

in the browser; Linux in a browser; Web application architecture; Web design;

Open source software

ii

www.manaraa.com

To my family, for their love and support.

iii

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank Professor Lawrence Angrave for coming up with the

initial idea for the project, and for giving me the opportunity to work on it.

The project and the thesis would not have been possible without his work,

mentorship, guidance, and feedback.

I would like to thank Professor Roy Campbell for providing guidance and

feedback on the project as well as on the thesis. His ideas and advice have

been indispensable in the completion of the project and this thesis.

In the Fall 2014 semester, this project became part of the Department of

Computer Science Senior Projects course [1] at the University, where a team

of seven students (including me) worked on the project for two semesters

(Fall 2014 – Spring 2015). I would like to thank the course Instructor, Pro-

fessor Michael Woodley, Project Liaison Professor Angrave, Teaching As-

sistants Terence Nip and Xiaodan Zhang (Sally), and the team of students

who worked on the project — Anant Singh, Eric Ahn, Joseph Tran, Keagan

McClelland, Scott Walters, and Siddharth Seth.

My grateful thanks are also extended to Terry Peterson in the ECE Advis-

ing office for her help and support on the thesis and to Jamie Hutchinson in

the ECE Editorial Services office for providing quick but thorough feedback

on this thesis.

Last but not least, I would like to thank my family and friends for their

love and support.

iv

www.manaraa.com

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND SYMBOLS vi

GLOSSARY OF TERMS . viii

CHAPTER 1 INTRODUCTION . 1
1.1 System Programming Instruction 2
1.2 Challenges in Teaching System Programming 3
1.3 The Project and Its Advantages 4

CHAPTER 2 FUNCTIONALITY AND USAGE 7
2.1 Lessons Page . 8
2.2 Lecture Video Page . 8
2.3 Play Activity Page . 10
2.4 Playground . 11

CHAPTER 3 DESIGN AND IMPLEMENTATION 23
3.1 Design Decisions . 23
3.2 Organization of the Project 24
3.3 Deployment Architecture . 27
3.4 Application Architecture . 29
3.5 Implementation of the “Compile and Run” Flow 32

CHAPTER 4 RESULTS AND ANALYSIS 43
4.1 Jor1k Performance Comparison 43
4.2 File Size Statistics . 45
4.3 Usage and Adoption . 48

CHAPTER 5 IMPROVEMENTS AND SUGGESTIONS 51
5.1 Automatic Grading of Student Code 51
5.2 Event Tracking and Analytics 52

CHAPTER 6 CONCLUSION . 53

REFERENCES . 54

v

www.manaraa.com

LIST OF ABBREVIATIONS AND
SYMBOLS

The Command key present on Mac keyboards

Ctrl or ctrl The Control key present on most keyboards

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CDN Content Delivery Network

CS Computer Science

CSS Cascading Style Sheets

DOM Document Object Model

GB gigabyte; 1 GB = 1000 MB

GCC The GNU Compiler Collection, a compiler system produced by
the GNU Project supporting various programming languages.
This system includes a compiler for the C programming lan-
guage. The term GCC will be used in this thesis to refer to
the C compiler.

gcc The GCC C compiler command-line executable program

GHz gigahertz

GiB gibibyte; 1 GiB = 1024 MiB

GNU GNU is a collection of free and open source software. GNU is
a recursive acronym for “GNU’s Not Unix!”

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ISA Instruction Set Architecture

JS JavaScript

JSON JavaScript Object Notation

vi

www.manaraa.com

KB kilobyte; 1 KB = 1000 bytes

KiB kibibyte; 1 KiB = 1024 bytes

KIPS Thousand instructions per second

MB megabyte; 1 MB = 1000 KB

MiB mebibyte; 1 MiB = 1024 KiB

MIPS Million instructions per second

MOOC Massive Open Online Course

MP Machine Problem, a term used for programming assignments
at UIUC

OR1K OpenRISC 1000

POSIX Portable Operating System Interface

RISC Reduced Instruction Set Computing

SSH Secure Shell

ttyN The N th virtual terminal of a Linux system

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

UIUC University of Illinois at Urbana-Champaign

URL Uniform Resource Locator

VM Virtual Machine

webapp Web Application

XHR/xhr XMLHttpRequest, a browser API used by AJAX techniques

XML Extensible Markup Language

vii

www.manaraa.com

GLOSSARY OF TERMS

Back-End A remote server capable of running application code (as opposed

to just serving files statically)

Branch A parallel version of the main line of development in a repository,

that is, the default branch (usually master)

Client-Side The part of a web application running on the front-end

Fork (of a Repository) A copy of a repository

Front-End The user’s web browser

GitHub Organization A central place for GitHub repositories owned by

a single group or company

GNU/Linux A distribution/version of the GNU operating system using

the Linux kernel

Linux Based on the context, this term can refer either to the Linux kernel,

or to a complete GNU/Linux operating system

Linux kernel A popular, Unix-like computer operating system kernel

Repository A set of files and associated metadata contained in a version

control system, such as Git

Server-Side The part of a web application running on the back-end

Single-Page Application A web application/site consisting of a single web

page, such that actions like navigation, fetching of data, form submis-

sions, etc., are performed without reloading the page

Wiki A website that allows direct collaborative editing of its content as well

as structure, while keeping a track of the corresponding changes

viii

www.manaraa.com

CHAPTER 1

INTRODUCTION

A computer needs an operating system to manage its resources and pro-

vide support for common functions such as accessing peripherals. System

programming refers to writing code that takes advantage of operating sys-

tem support for programmers to provide users and other programmers useful

interfaces for accessing the hardware and other resources [2]. Such code

comprises a class of computer software known as system software. System

software provides a platform for running application software by providing a

useful abstraction on top of the operating system kernel and device drivers,

and is crucial to the functioning of any sufficiently complex computer system.

The writing and understanding of system software is therefore an impor-

tant field of interest in computer science. As such, system programming is an

integral part of any thorough computer science curriculum, including most

four-year undergraduate degree programs. Yet the tools and resources for

learning system programming lag behind those for learning other areas of

programming, such as web development. This lack is due to the unique set

of challenges involved in teaching system programming.

Section 1.1 specifies what teaching system programming involves. Section

1.2 then discusses the challenges involved in teaching system programming,

the tools currently used, and why there is a need for better tools. Building

upon this context, Section 1.3 concludes the chapter by introducing the focus

of this thesis, a browser-based tool which aims to provide a simple, accessible,

and convenient environment for learning system programming.

1

www.manaraa.com

1.0.1 A Note About This Thesis and the Project

Software projects, by their very nature, tend to change through time. This

is true especially in the front-end web development landscape, where tools

and frameworks have very short lifespans.

This thesis is based on a project that is under active development, and as a

result, many details such as functionality, implementation, design decisions,

and development practices mentioned about the project are likely to become

outdated. There is also a chance that the project may not be available in its

current form in the future, although it is unlikely.

Because of this, the most important components of the project have been

archived and preserved, and can be accessed through their permanent digital

object identifiers (DOIs) [3],[4]. Although it is not feasible to archive every

component required to be able to reproduce the developed tool exactly, the

archived source code should be sufficient for understanding several details

unique to the project.

Despite the fact that it is actively being developed and improved, the

project in its current state is very much complete in its own right. Thus, the

facts and ideas mentioned in this thesis should contribute valuable knowledge

to the field of computer science.

1.1 System Programming Instruction

It is important to note that system programming is a vast topic, with vary-

ing definitions of what exactly it covers. This means that there are major

differences in various system programming courses in terms of the topics cov-

ered, the tools and methods used for teaching, the placement of the course in

the overall course sequence of a computer science curriculum, the expected

skill-level of students, among others. Therefore, this thesis refers to system

programming as described and taught in CS 241, the undergraduate sys-

tem programming course offered by the Department of Computer Science at

UIUC [5].

2

www.manaraa.com

1.1.1 Platform and Programming Language

The pairing of C and Linux/Unix is used heavily by software that must pro-

vide high performance and low-level control of the program’s execution [2].

This makes the combination highly suitable for introducing system program-

ming concepts, which is why many courses, including CS 241, choose the C

language running on a Linux/Unix operating system (which implements the

POSIX standard) for instruction. Hence, throughout the rest of the thesis,

the C over Linux/Unix combination is assumed to be the default language

and platform combination for teaching system programming.

1.2 Challenges in Teaching System Programming

1.2.1 Development Environments

Because of the low-level, “close-to-hardware” nature of system programming,

it requires very specific development environments, which include the operat-

ing system, compiler toolchain, the programming language, and its libraries.

For example, CS 241 uses a POSIX-compliant Linux-based operating system,

the clang C compiler, and other tools for debugging. The versions of each are

important. This makes setting up a development environment a complicated

and sensitive process, which can be daunting for beginners.

To achieve consistent development environments, many university courses

ask students to use computers available in their lab facilities, or to use com-

patible hardware and software if students are using their own machines. One

way to make setup easy and consistent (without using computer lab facilities)

is by distributing pre-configured virtual machines. During several semesters

CS 241 followed this approach. However, virtual machines tend to be big in

size (> 2 GBs), which makes them impractical to distribute to a large class

or to remote students with limited Internet connection bandwidth. Another

way is to provide students remote access to hosted virtual machines, via, for

example, SSH. Recent offerings of CS 241 follow this approach. However,

this approach is also impractical to scale to a large number of students.

3

www.manaraa.com

The recent popularity of online courses (especially MOOCs) makes it even

more important to have development environments that can be quickly boot-

strapped and easily distributed. The only scalable solution is to deliver the

development environment in the web browser. There are a few in-browser C

programming environments [6],[7], but they usually rely on a server infras-

tructure to compile and execute C code, which makes them hard to scale

and prone to security and privacy issues. Due to security and scalability

concerns, no existing in-browser C programming environment provides full-

blown access to a virtual machine, making them of little use for the purpose

of system programming.

1.2.2 Course Material

System programming concepts are hard to grasp already. Getting famil-

iar with the programming language and tools adds to the complexity for

a learner, especially in an instructor-led or non-self-paced course. There is

often a wide gap between concepts taught in the classroom and the skills

required for hands-on practical assignments.

For example, CS 241 is the first time most computer science students

at UIUC are introduced to C. However, the first assignment in the course

gets started with relatively advanced concepts — even though there are lab

sections where course staff can help, students are expected to learn C and

navigate “trivial” programming issues by themselves.

This is where a simple-to-use C programming learning tool with short bite-

sized challenges would be of great utility. There are many browser-based

programming learning environments, but most of them focus on teaching

web and scripting languages [8]–[11].

1.3 The Project and Its Advantages

To address the challenges mentioned in Section 1.2, we started a project that

aims to build a system programming and C learning environment for begin-

4

www.manaraa.com

ners, which is simple to use, easy to distribute, accessible to a wide range

of audiences, and easy to scale. To the best of our knowledge, prior to this

project, there was no viable implementation that achieved these goals. The

tool developed in the project so far has four major features and characteris-

tics, listed in the subsections below, that are designed to achieve these goals.

Recent advances and improvements in web platforms, technologies and their

performance have made such a tool not only possible, but feasible as well.

1.3.1 Purely Client-Side

Being a web application, the tool does not require anything more than a

recent, standards-compliant web browser. There is also no need to sign-up,

login or create an account. Our tool is unique in the sense that it is a purely

client-side web application — it runs entirely in the user’s web browser — and

so there is no need to use and maintain expensive server-side infrastructure.

This means that the tool can be served by static web servers or CDNs, which

are highly efficient and are often free or extremely cheap. Because of this,

the application is highly scalable and easy to make available, making it well-

suited for MOOCs.

1.3.2 Embedded Virtual Machine

The tool embeds a tiny but fast virtual machine, built in JavaScript, that

runs a full-fledged Linux operating system right in the user’s web browser.

The VM contains many features and devices, such as audio, video, a proper

filesystem, an emulated network interface, and more. This makes it very

suitable for letting students experiment with low-level system programming,

without worrying about making the system unusable. If a student makes a

mistake, reverting the machine to a usable state is as simple as refreshing

the web page.

5

www.manaraa.com

1.3.3 Powerful Code Editor

The tool comes with a fully-featured code editor, with features such as syntax

highlighting, multiple themes, and keyboard shortcuts. The editor has been

designed to support learners new to the C language, by providing features

such as automatically indenting code, quick search and access to the Linux

man pages, and highlighting and linking C constructs to their corresponding

man pages.

1.3.4 Integrated Learning Material

The tool also comes with lecture videos and lessons from an instructor, ac-

companied by short, bite-sized programming exercises to help beginners be-

come comfortable with the C language. The current course material consists

of introductory C and system programming concepts, with more content and

material being continuously developed. The goal is to have a complete in-

troductory system programming course built into the tool and available for

free.

The variety and depth of features included make this tool unique and a

compelling alternative to other methods of introducing system programming

to beginners. The tool has immense potential and there are lots of exciting

applications of this tool for students and educators as well as researchers.

6

www.manaraa.com

CHAPTER 2

FUNCTIONALITY AND USAGE

This chapter provides a thorough tour of the tool’s user interface, while

demonstrating its functionality and various features. The tool can mainly

be used in two ways, either as a self-paced, guided sequence of lessons and

exercises, or as a free-form playground to learn and experiment with C code.

The lesson sequence is intended to be a course providing comprehensive

introduction to C and system programming, and is aimed at beginners new

to the C language. The course material is still being developed, but once

completed, can either be used as a standalone self-paced course, or as ac-

companying material for a classroom course such as CS 241. Each lesson is

a chapter containing multiple sections related to a topic. Each section of a

given chapter consists of a series of activities. An activity could be a short

lecture video, an interactive exercise, or a graded programming quiz. There

are no quizzes as of yet, and interactive exercises are currently not checked

to see if the student has performed them correctly. Consequently, tracking

of course progress has not yet been implemented.

A resource which complements this project well is Professor Lawrence

Angrave’s System Programming wiki-book [12]. The wiki is a textbook-

style introduction to System Programming and C. It is built by students

and faculty from the University of Illinois and is a crowd-sourced authoring

experiment by Professor Angrave. Being a wiki, the book is constantly being

improved and expanded. CS 241 relies heavily on the wiki-book.

The web application built in this project consists of three main views or

screens. A navigation bar is accessible from the top of every page, and

allows navigating to any view. The navigation bar also provides a link to the

aforementioned wiki-book.

7

www.manaraa.com

2.1 Lessons Page

The lessons view lists all the available chapters, their descriptions and their

sections. This is also the home page of the application, and is shown when

a user first visits the website using the default URL. Figure 2.1 shows the

lessons page.

Figure 2.1: The Home/Lessons page

Clicking on a section title takes the user to the relevant section’s first

activity, usually a lecture video. Clicking on a chapter number takes the user

to the first activity of that chapter’s first section.

2.2 Lecture Video Page

Upon navigating to a video activity, the user is shown the video view. Figure

2.2 shows the lecture video for Chapter 1, Section 2: “Hello Standard Error

8

www.manaraa.com

Stream”. This video is the first (and only) activity of the section.

The figure showcases a number of features of the video view. The title of

the video is shown above the video player. Every lecture video is followed

by an optional description of the video, and optional comments made by

the video’s author. In this case, the lecture is given by Professor Lawrence

Angrave, and is titled “Hello Standard Error Stream”. Professor Angrave’s

comment below the video clarifies one of the concepts discussed in that video.

Figure 2.2: An example lecture video

The Previous and Next buttons allow the user to navigate to the previous

and next activities, respectively. If the current activity is the last activity of

a section, pressing Next on that page will take the user to the first activity

of the next section. If the current activity is the last activity of a given

chapter’s last section, pressing Next will take the user to the Lessons index

page. Similarly, if the current activity is the first activity of a section, pressing

Previous on that page will take the user to the last activity of the previous

section. If the current activity is the first activity of a given chapter’s first

section, pressing Previous will take the user to the Lessons index page.

Currently all lecture videos are recorded by Professor Lawrence Angrave,

9

www.manaraa.com

the current CS 241 course instructor. The video shown in Figure 2.2 is

characteristic of all the other videos, in the sense that it consists of a view

of Professor Angrave typing code in the playground editor, with him talk-

ing in an inset window. All currently available lecture videos are recorded

in English. English subtitles are also available for each video, and can be

enabled through the video player controls.

2.3 Play Activity Page

When a user navigates to a programming exercise or quiz activity (both are

types of “play” activities), they are shown the play view. Figure 2.3 shows

the play activity for Chapter 1, Section 2: “Hello Standard Error Stream”.

This activity is a programming exercise, and is the second (also the last)

activity of the section.

Figure 2.3: An example programming exercise

The Previous and Next buttons on the top-right corner of the page are

identical in function to the ones in the video view, which are described in

Section 2.2.

10

www.manaraa.com

Apart from the Previous and Next buttons, the play view is identical to

the playground page, and so the various elements present on the page will

be described in much more detail in Section 2.4.

During an exercise, a user is expected to follow the instructions in the

document in the upper-right pane, and write code in the editor to implement

the program required. The user can then press the green “Run It” button

to have their written code compiled and executed in the VM, as can be seen

in the terminal window in the lower-right pane. Once satisfied with the

results, the user can then proceed to the next activity using the Next button

described earlier. As mentioned earlier in this chapter, there are currently no

programming quizzes, and programming exercises are not checked to see if the

student has performed them correctly. Having the ability to automatically

check and grade student code is an active area of research and development

in this project.

2.4 Playground

A user can reach the Playground page either by navigating directly (using the

“Playground” link in the navigation bar) or by navigating to a programming

exercise or quiz activity, as mentioned in Section 2.3.

The Playground is the heart of the project. This is where a user can write,

compile and execute C code, and access useful documentation. Figure 2.3 in

Section 2.3 shows the Playground. It has been carefully designed with the

beginner C programmer in mind.

A number of details about the page are demonstrated by the figure, most

notably the presence of three different panes or panels. Each pane contains

various components supporting the Playground functionality. The left pane

contains a tabbed browser, which contains the code editor, video search, and

man page tabs. The upper-right pane contains a document explaining the

current exercise. The lower-right pane contains the embedded VM’s terminal

window. The following subsections detail some of these components.

11

www.manaraa.com

2.4.1 Code Editor

The playground embeds a plain-text editor, with color syntax-highlighting

for C constructs, automatic indentation of code blocks, multiple themes, and

more. A screenshot of the editor can be seen in Figure 2.4.

Figure 2.4: The code editor

Clicking the Settings button reveals a small box for tweaking some editor

preferences, as shown in Figure 2.5. These editor preferences, along with

the editor theme and font size, are saved in the browser’s storage, so that

whenever the user visits the web application again, the editor will be exactly

as they left it.

One of the most important features of the code editor is automatic high-

lighting of certain tokens (Linux system calls, C standard library functions

and data types, etc.) which have entries in the Linux man pages. In Fig-

ure 2.4, for example, the printf function is highlighted. Clicking on the

highlighted token opens a new “tab” containing the man page for the corre-

sponding token. Section 2.4.2 explains more about man page tabs. To the

best of our knowledge, no other C editor, web-based or otherwise, provides

such direct linking to the man pages, which makes this project a unique

12

www.manaraa.com

Figure 2.5: The editor settings dialog

resource for beginning C programmers.

2.4.2 Man Page Search

Quick and easy access to documentation is necessary for programming, espe-

cially for beginners. Apart from automatic highlighting and linking of tokens

inside the editor to corresponding man pages as mentioned in Section 2.4.1,

the ability to quickly search for man pages is available from right inside the

Playground, as shown in Figure 2.6.

Figure 2.6: The man page search tab

To facilitate easy searching and finding the right documentation, the user’s

search term is automatically completed and relevant results are shown as they

13

www.manaraa.com

type. The section to which a man page belongs is also shown next to the

search result. An example search is shown in Figure 2.7.

After selecting a man page, a user can either press the Enter key or click

on the “Open Man Page” button to open the selected man page in a new tab.

Figure 2.8 shows the man page for the sigaction system call open inside a

tab.

Figure 2.7: Auto-completion in action when searching for man pages

2.4.3 Virtual Machine Terminals

As mentioned in Section 1.3.2 on page 5, the project embeds a full-featured

Linux-based VM. The VM has two terminals (tty0 and tty1), each running

a command line shell (sh), and can be accessed from the lower-right pane of

the Playground. The terminal pane is shown in Figure 2.9.

The upper-right corner of the terminal pane contains buttons for switching

the active terminal and for displaying the terminal in full-screen.

An advantage of having two terminals is that a user can run a blocking

process on one terminal and still be able to interact with the VM using the

14

www.manaraa.com

Figure 2.8: A man page opened in a tab

other terminal. One use case of this is to have exercises where there is a server

process running on one terminal and a client process running on the other

terminal. These kinds of exercises might be helpful for teaching computer

networking fundamentals [13],[14].

Displaying a terminal in full-screen can be useful in many cases. For exam-

ple, it was used by Professor Angrave to perform live interactive command-

line sessions in several CS 241 classroom lectures.

15

www.manaraa.com

Figure 2.9: Interacting with the VM on tty0

2.4.4 Compile and Run Controls

Just below the code editor is a button which allows compiling the C code

present in the editor and then running it automatically. Next to the button

are controls for setting options for the compiler (gcc), and for specifying the

arguments passed to the program when running it on the command-line, as

shown in Figure 2.10.

Figure 2.10: Controls for compiling and running the program, setting
options for gcc, and specifying the command-line arguments passed to the
program

The “compile and run” command can also be invoked using the Ctrl + Enter

(+ Enter for Mac systems) key combination inside the editor.

2.4.5 VM and Compiler Status Bar

At the bottom of the Playground screen is a status bar showing the current

state of the VM, its processor speed in KIPS/MIPS if it is running, and the

status of the compilation process, as shown in Figure 2.11.

16

www.manaraa.com

Figure 2.11: The VM and compiler status bar

Possible VM states:

Stopped The VM’s execution has been explicitly stopped. The project

currently does not include functionality for stopping the VM, so this

status is never encountered under normal circumstances.

Booting The VM’s operating system is booting.

Running The VM’s operating system has finished booting and is running

normally. The OS could either be running a process executed explicitly

by the user, or could be waiting for user input.

Paused The VM’s execution has been explicitly paused. Pausing differs

from stopping the VM in the sense that the VM execution can be

resumed from the exact point at which it was paused. The project

currently does not include functionality for pausing the VM, so this

status is never encountered under normal circumstances.

Possible compilation process states:

Waiting The VM is unavailable for compilation, because it could either be

booting, or has been stopped/paused. The “compile and run” com-

mand is unavailable in this state, and the “Run It” button shown in

Figure 2.10 is disabled (greyed out).

Ready The VM is running, and no compilation has been performed since

the VM finished booting. The program is ready to be compiled in this

state.

Compiling The program is currently being compiled. It is important to

note that this status is shown only when the compilation has been

started using the “compile and run” command (either through the “Run

It” button or the editor keyboard shortcut). Detection of compilation

status is currently not supported if the user runs the compiler directly

17

www.manaraa.com

by using the gcc command on the command-line.

Canceled The current compilation process was interrupted by invoking a

new compilation. During compilation the “Run It” button is disabled,

so the only way for a user to cancel the current compilation and start

a new one is by using the Ctrl + Enter (+ Enter for Mac systems)

editor keyboard shortcut. Although the displayed status remains as

“Canceled”, the new compilation process will immediately be invoked

and run just like in the “Compiling” status.

Success The last compilation of the program was successful. Immediately

following a successful compilation, the compiled program is automat-

ically executed on the command-line, and its output is visible in the

terminal pane.

Warnings The last compilation of the program was successful, although

some warnings were generated by the compiler. The status bar also

displays the number of warnings generated, if it could be determined.

Just like the “Success” state, the compiled program is automatically

executed on the command-line following the compilation.

Failed The last compilation of the program was unsuccessful because of

errors reported by the compiler. Depending on the nature of the errors

produced (and presence of warnings), the status bar displays one of the

following messages:

• “n errors...”, where n is the number of errors reported: Shown

when no warnings are reported

• “n errors m warnings...”, where n and m are the number of errors

and warnings reported, respectively

• “Failed...”: Shown when errors were reported, but the number of

errors could not be determined

Because the last compilation process was unsuccessful, no executable is

produced by it, and consequently, no program is automatically executed

after a failed compilation.

18

www.manaraa.com

2.4.6 Compiler Error/Warning Reporting

Clicking on the compiler status box (described in Section 2.4.5) in the “Warn-

ings” or “Failed” compile states opens a small window which shows the out-

put of the compiler. Figure 2.12 shows an example of such a window.

Figure 2.12: Errors/warnings reported by the compiler

If errors or warnings reported by the compiler point to lines in the pro-

gram source code, those lines are annotated in the editor. The respective

error/warning messages can be seen by hovering the mouse over the annota-

tions, as can be seen in Figure 2.13.

If an error is caused by incorrect options for gcc, then the input box for

setting compiler options is highlighted in red, and the relevant error message

is shown when the box is clicked, as shown in Figure 2.14.

2.4.7 Lecture Video Search

Another feature which makes this project very useful for learners is the ability

to search through lecture videos based on text transcriptions of the Instruc-

tor’s speech. This allows a user not only to easily locate a relevant lecture

19

www.manaraa.com

Figure 2.13: Source code lines causing errors or warnings are annotated

Figure 2.14: Errors in the options/flags passed to the compiler shown when
the input box is clicked

video, but also jump directly to the part of the video where the instructor is

saying the sentence searched for.

This functionality can be accessed through the “Video Search” tab in the

Playground, as shown in Figure 2.15. As can be seen from the figure, a

user can search for any part of a phrase or sentence from a lecture. Relevant

search results for the search query are shown in a drop-down below the search

box. Search results are filtered automatically in real-time as the search query

is typed in. Every search result displays the title of the video, the phrase or

sentence matching the search input, and the exact time (in milliseconds) from

the start at which the matching phrase/sentence is spoken by the Instructor

in the video.

After selecting the desired search result, the user can either press the Enter

key or click on the “Search Video” button to see the corresponding lecture

video. The resulting video is shown below the search input, as shown in

Figure 2.16. The video is automatically skipped to the exact point at which

the matching phrase/sentence appears.

20

www.manaraa.com

Figure 2.15: Searching for a phrase in the available lecture videos

Figure 2.16: The resulting video of a search, loaded and skipped to the
relevant part

21

www.manaraa.com

This concludes the tour of the features and functionality offered by this

web application. This chapter has aimed to highlight the usefulness of this

tool for learners of all skill levels.

22

www.manaraa.com

CHAPTER 3

DESIGN AND IMPLEMENTATION

This chapter describes details of the design, architecture and implementation

of the web application developed in this project. The organization of the

project itself is also described, as it is important for understanding some of

the technical details of the application and design decisions taken.

3.1 Design Decisions

One of the major design considerations of this project, as mentioned in Sec-

tion 1.3.1, was that the entire web application should be purely client-side,

that is, there should be no need to run server-side code.

This means that features traditionally requiring a back-end web server

had to be implemented using workarounds to either perform the equivalent

computation on the client-side (as done, for example, in the case of C code

compilation), or pre-compute things and serve them statically (as done with

man page metadata).

Even though a back-end server will eventually be needed for more features

in the future (for example, persisting data such as user logins, user course

progress, etc.), this constraint of developing a purely client-side application

led to many outside-the-box solutions. These solutions make this project

unique (such as having a complete VM inside the browser) and scalable (a

static website is, by default, more scalable than a website needing server-

side computation), and helped avoid the hassles of managing a complex web

server infrastructure, as discussed in Section 3.3.

23

www.manaraa.com

3.2 Organization of the Project

The project’s source code, course material and other resources are available

in public repositories hosted on GitHub, a web-based project hosting service

[15]. The project also uses GitHub for collaboration, issue tracking, feature

planning, code reviews, and more. The source code is managed using the Git

version control system [16], which GitHub supports natively.

The project consists of five Git repositories, each hosted on GitHub under

the “cs-education” GitHub Organization [17]. This Organization was created

to contain these five repositories and any other repositories created by the

project in the future. Today, the Organization houses several more projects

developed by students and researchers at UIUC. Every project in the Or-

ganization has the common goal of improving the teaching and learning of

programming and other areas of computer science.

The repositories that are part of this project (and the “cs-education” Or-

ganization) are:

• sysbuild (archive [3] and source [18])

• sysassets [19]

• sys-staging [20]

• sys [21]

• jor1k (archive [4] and source [22])

3.2.1 Web Application Code Base

The source code for the web application is contained in sysbuild, and is

available under a modified version of the University of Illinois/NCSA Open

Source License.1 Issue tracking, bug reporting and feature planning for the

project are also performed in this repository. The directory structure of the

repository is given in Listing 3.1.

1https://opensource.org/licenses/NCSA

24

www.manaraa.com

sysbuild/

app.......................................Application source code
images.. Images/pictures
jor1k....................Jor1k dependency copied during setup
scripts..JavaScript files
styles......................................Sass and CSS files

dist ..Build output
bower components................Runtime dependencies (libraries)
node modules...........Development dependencies (Grunt plugins)
sys-gh-pages-configConfig for the deployed application
test ...Unit tests

spec

Listing 3.1: Directory structure of the sysbuild repository

The initial layout for the source code was scaffolded using a tool called

Yeoman [23]. Yeoman uses “generators” to set up a project with directo-

ries, boilerplate code, automated build systems, and more, while taking into

account best-practices advocated by industry leaders.

In particular, the “webapp” generator from the Yeoman team [24] was

used to scaffold the project. This generator helped set up an empty project

with the following components/features, all configured and wired-up to work

properly with each other:

• The Bootstrap UI framework [25]

• Automated build system using the Grunt task runner [26]

• Unit testing tools and libraries

• Dependency management using Bower [27]

• CSS preprocessing using Sass [28]

3.2.2 Assets and Resources

Pre-compiled assets and resources used in the project, such as lecture videos,

lesson documents, Man pages, video captions, files included in the VM filesys-

tem, and more, are kept in sysassets.

25

www.manaraa.com

Keeping the assets separate from the main project source code allows

Professor Angrave to record videos and upload them independently of the

project’s main repository, sysbuild. Several Git operations (such as cloning,

pushing changes, etc) on sysbuild can also be performed much faster as the

repository contains mostly source code, and is therefore much smaller com-

pared to sysassets. This makes the development experience for contribu-

tors much more pleasant, because most of the development work happens in

sysbuild.

This repository is also used for serving the contained assets directly to the

deployed web application, as explained in Section 3.3.3.

3.2.3 Deployment Repositories

The sys-staging and sys repositories are used for the “staging” and “pro-

duction” deployment environments of the web application, respectively. Sec-

tion 3.3 provides more details of the deployment setup.

3.2.4 Emulator Code Base

The jor1k repository contains the emulator which powers the VM embedded

in the application. Section 3.4.5 provides more details about the emulator

and the VM.

The jor1k repository is actually a fork of the s-macke/jor1k GitHub

repository [29], which is the original source of the emulator. The parent of

a forked repository is usually called the “upstream” repository, which, in

the case of jor1k, is s-macke/jor1k. Since the emulator is an essential

part of the project, having our own fork of the upstream ensures that the

project is not adversely affected in case the upstream repository is removed

or its development significantly changes directions. Having a fork also allows

contribution of changes back to upstream. Several contributions and changes

have been made to the upstream repository as part of this project.

The work-flow practiced during development of this project is that two sep-

arate branches are maintained in jor1k (the forked repository) — master

26

www.manaraa.com

and sysbuild-stable. The master branch is always kept in sync with the

upstream repository’s master. The actual dependency used by the project is

kept in the sysbuild-stable branch. The sysbuild-stable branch usually

lags behind master, and is brought up-to-date only when there is sufficient

confidence that the latest changes in master do not break the project’s func-

tionality.

3.3 Deployment Architecture

As mentioned in Section 3.1, the entire web application is client-side, which

makes it ideal for hosting on GitHub Pages, described below.

3.3.1 GitHub Pages

GitHub Pages is a free service that provides static web hosting for GitHub

projects [30]. To create a project website, a branch called gh-pages has to

be created inside the Git repository. GitHub Pages automatically makes the

contents of this branch available at the URL http://<username>.github.

io/<repository> [30]. The are several advantages of using GitHub Pages:

• Websites are highly scalable, because they are backed by GitHub‘s

infrastructure as well as a global CDN [31]

• Support for custom domain names, although this project does not use

them at the moment

• No need to manage and administer a server

• Deployment is as simple as pushing changes to a Git repository

• Because deployed sites are Git repositories, changes made during de-

ployment can be easily tracked

• Completely free

The biggest limitation of GitHub Pages is the lack of support for server-

side computation, such as processing of web requests and accessing databases,

27

www.manaraa.com

which will make it difficult to implement certain new features in the project

such as the ability to save course progress of a user across different browsers

or devices.

3.3.2 Repositories for Deployment to GitHub Pages

Before deployment, a build process makes several optimizations to the source

code in the development repository, sysbuild. Instead of pushing the built

code to the gh-pages branch of sysbuild for deployment, separate Git repos-

itories are used, so as to keep sysbuild small and avoid it from getting

bloated.

These repositories are created specifically for deployment, and contain only

the gh-pages branch. Currently, two Git repositories are used for this pur-

pose, as mentioned in Section 3.2.3.

3.3.3 Multi-tier Deployment Setup

Having separate repositories for deployment allows multiple deployment en-

vironments. The environments used in this project are:

Development Run from a local web server on the developer’s machine.

Used for testing the application during development.

Staging Hosted from the GitHub Pages site of the sys-staging repository

and available at https://cs-education.github.io/sys-staging. Used

by the development team to test out new features and changes before

deploying to the production environment.

Production Hosted from the GitHub Pages site of the sys repository and

available at https://cs-education.github.io/sys. This is the ac-

tual user-facing web application.

Assets and resources used by the application are served from the GitHub

Pages site of the sysassets repository, available at the URL https://

cs-education.github.io/sysassets. All three aforementioned deploy-

ment environments use assets served from this URL.

28

www.manaraa.com

3.4 Application Architecture

The web application is a purely client-side, single-page application. It is

developed using the standard front-end web technologies: HTML, CSS and

JavaScript. The project also makes use of Sass, a CSS preprocessor which

adds several extensions to CSS [28].

The application is composed of five major components. Figure 3.1 shows

these components and the interactions among them. Each of these com-

ponents is briefly described below. It is important to note that a given

component may not necessarily map to a single JavaScript module or source

file.

Figure 3.1: Application components and their interactions

3.4.1 User Interface

The User Interface component consists of elements displayed on the web

page and the code for manipulating those elements. It also contains code

for manipulating the DOM itself. It uses the Bootstrap framework [25] for

29

www.manaraa.com

various widgets and UI design elements, the jQuery library [32] for DOM

manipulation and other utility functions, and the jQuery UI Layout plugin

[33] for implementing the multi-pane design of the Playground (shown in

Figure 2.3 on Page 10).

3.4.2 View Model

The View Model abstracts the User Interface component from the other com-

ponents and also maintains certain application state. When the UI changes

(for example, through user input), the View Model updates the relevant ap-

plication state and notifies other components. Likewise, it updates the UI

based on changes from other components. It uses the Knockout JS library [34]

for two-way data-binding between a JavaScript object (the Model) and the

DOM (the View).

3.4.3 URL Router

Because the web application is single-page (in fact, the entire HTML is con-

tained in a single file), “navigation” between the various pages described in

Chapter 2 is actually performed on the client-side, by showing and hiding

relevant portions of the DOM and accordingly updating the web browser’s

URL/address bar. This kind of navigation is referred to as routing, and is

handled by the URL Router component. This component uses the Sammy.js

web framework [35] for performing its task, which also involves handling up-

dates to the URL in the browser’s address bar and triggering updates on the

View Model component accordingly.

3.4.4 Code Editor

This component implements the C code editor described in Section 2.4.1. It

is built upon Ace, an embeddable editor written in JavaScript [36]. Because

the editor is a core part of this project, the underlying library powering the

30

www.manaraa.com

editor was chosen very carefully. Ace fulfilled our design requirements for

many reasons, including the following:

• Ace is a mature, stable project with an active community.

• It is fully open source, under the BSD (3-Clause)2 license [36].

• It provides good support for the C language, including syntax high-

lighting, auto-completion, and smart indentation of code blocks.

• It is highly extensible via an API providing thorough control over sev-

eral aspects of the library.

3.4.5 Virtual Machine

This component implements the VM described in Section 1.3.2 on Page 5.

The VM is powered by jor1k, an emulator for the OpenRISC 1000 (OR1K)

Instruction Set Architecture (ISA) written in JavaScript [37]. The name jor1k

stands for “JavaScript OpenRISC 1000”.

OR1K defines the architecture of a family of open source, RISC micro-

processor cores. It is a 32/64-bit load and store RISC architecture designed

with an emphasis on performance, simplicity, low power requirements, and

scalability. OR1K targets medium and high performance networking and

embedded computer environments [38].

Jor1k emulates the 32-bit OR1K architecture as well as several devices

such as UART, audio controller, real time clock, Virtio (with support for the

9p filesystem), and more. It runs a GNU/Linux operating system based on

Linux kernel 3.18 and BusyBox [39].

Like the Code editor component, the VM is a core part of this project, and

so the decision to use jor1k was made after careful consideration of several

alternatives. Some of jor1k’s features which make it a good fit for this project

are:

• It is very fast (in fact, Section 4.1 on Page 43 shows that it is much

faster than alternative JavaScript VMs, which is what makes jor1k a

2https://opensource.org/licenses/BSD-3-Clause

31

www.manaraa.com

clear choice for this project).

• It is completely open source, under the BSD (2-Clause)3 license [29].

• It has out-of-the-box support for Linux.

• OR1K is a popular and simple architecture.

• The lead developer is very supportive and responsive.

• The project is actively developed and has a sufficiently large commu-

nity.

• The code base is well-written, extensible and easy-to-understand.

• It provides support for networking (through an emulated Ethernet de-

vice using WebSockets), although our project does not use it currently.

• It provides support for graphics (through the Linux framebuffer, fbdev),

although our project does not use it currently.

3.5 Implementation of the “Compile and Run” Flow

Details of the implementations of each of the components mentioned in Sec-

tion 3.4 and their interactions are beyond the scope of this thesis. However,

it is worthwhile to explain how the VM, C compiler, code editor, and other

parts of the Playground work together to support compiling and running the

user’s code.

The following explanation refers mainly to the files app/scripts/live-edit.

js and app/scripts/sys-runtime.js, part of the web application’s source

code in the sysbuild repository. A few code snippets are shown to aid in

the explanation. It should be noted that these snippets contain modified

versions of the actual source code. Modifications include omission of parts

of code not relevant to the explanation, and some formatting changes. As

such, these code snippets cannot be run independently. The language used

in the snippets, like the rest of the application, is JavaScript (in particular,

EcmaScript 5.1.4)

3https://opensource.org/licenses/BSD-2-Clause
4http://www.ecma-international.org/ecma-262/5.1/

32

www.manaraa.com

3.5.1 Sending Commands to the VM

Sending commands to the VM is fairly straightforward — jor1k supports

sending data directly to the terminal. However, things get complicated when

there is a need to wait for the command to finish executing, and/or capture

its output. Because of the asynchronous nature of JavaScript, one cannot

block the “main thread” to wait for the command to finish. Also, except for

inefficient polling, there is no direct way to find out if and when a command

has finished executing, because jor1k does not provide any notifications for

events occurring in the VM’s operating system.

We implemented the sendKeys function to work around these limitations.

Listing 3.2 shows the signature of this function.

The code shown in Listing 3.5 makes use of the “expect” string argument

of sendKeys to determine when GCC has exited, as explained later in Sec-

tion 3.5.2.

3.5.2 Invoking the Compiler

When a user clicks the “Run It” button or presses the Ctrl + Enter (+ Enter

for Mac systems) key combination inside the editor, the compile function

is executed, shown in Listing 3.3. This function then invokes the runCode

method on the liveEdit object,5 passing in the program’s source and the

options to be passed to GCC (see Section 2.4.4).

The runCode function, shown in Listing 3.4, validates the code input,

updates the UI with the new compilation status (see Section 2.4.5), and

invokes the startGccCompile function on the runtime object,6 passing in the

validated code, the compiler options, and a callback function to be invoked

once the compilation has finished.

The startGccCompile function, shown in Listing 3.5, enables capturing of

the text flowing into the terminal, by setting this.captureOutput = true.

5The liveEdit object is defined elsewhere in the source code. For the purposes of this
discussion, it can be simply assumed to be a module containing some functions.

6Similar to liveEdit, the runtime object is defined elsewhere in the source code, but
can be assumed to be a module containing some functions.

33

www.manaraa.com

It then makes use of the sendKeys function (described in Section 3.5.1) to

delete any existing ~/program.c and ~/program files created during previ-

ous compilations, using the rm command. Next, it uses the sendTextFile

function, shown in Listing 3.6, to copy the contents of the editor to the

~/program.c file inside the VM.

Finally, the function invokes the C compiler using the sendKeys function.

As can be seen in Listing 3.5, the command sent to the VM contains some

echo and clear commands preceding and following the actual gcc command.

Because all the commands are sent as a single command string (separated by

semicolons), the shell executes them one-by-one, and each command’s output

is followed by the next without the terminal prompt being inserted between

the two outputs. Because terminal output capture was enabled earlier, the

output of this compound command is captured and saved. An example of

the output text captured is shown in Listing 3.7, where it can be seen that

the output of the gcc command is “fenced” between the ###GCC_COMPILE...

“magic” strings. Using this fact and the “expect” parameter of sendKeys, the

compileCb callback is registered to be called when compilation has finished.

3.5.3 Post-Compilation

As mentioned in Section 3.5.2 above, the compileCb callback function (shown

in Listing 3.8) is called when compilation has finished. This function exploits

the format of the captured terminal output (example shown in Listing 3.7) to

extract the output of the gcc command as well as its exit code using Regular

Expressions. Using a helper module (not listed), the function then parses

this output to generate a list of errors, warnings, and other information.

This information is passed as a parameter to the processGccCompletion

callback function registered by the runCode function in Listing 3.4.

The processGccCompletion function, shown in Listing 3.9, uses the result

of the compilation passed from compileCb to update the UI. Next, based

on the exit code of the gcc process, the function determines whether the

compilation succeeded or failed, and sets the compile status accordingly.

If the compilation was successful, the function invokes the startProgram

function with the name of the executable file (“program”) and the argument

34

www.manaraa.com

string to be passed on the command line (see Section 2.4.4).

The startProgram function, shown in Listing 3.10, sanitizes its input and

then sends the command to run the compiled executable. Throughout the

entire compilation process, several clear commands are placed appropriately,

so that the terminal does not become cluttered with any of the “magic”

strings, etc. So, once the startProgram function has executed, only the

output of the executable run on the command line is visible to the user in

the terminal pane (see Section 2.4.3). At this point, the “Compile and Run”

flow is complete.

35

www.manaraa.com

/**

* Send a command text to the specified jor1k terminal.

* Optionally register a callback function to be called

* when a specified string is output on the terminal,

* useful for getting notified when the command has

* finished executing.

*

*

* @param {string} tty - The terminal ('tty0' or 'tty1')

* on which the text is sent

*

* @param {string} text - The text to be sent to tty

*

* @param {string} expect - The string to listen for in the

* terminal output

*

* @param {function} success - Callback function to be

* called when either the expect string has been found,

* or when .cancel() has been called on the return

* value of this function

*

* @param cancel - Unused

*

* @return {object} An object providing a .cancel() method

* to remove the listener for the expected string

*/

SysRuntime.prototype.sendKeys =

function (tty, text, expect, success, cancel) {

// ...

};

Listing 3.2: Signature of the sendKeys function

var compile = function () {

var code = editor.getText();

var gccOptions = viewModel.gccOptions();

liveEdit.runCode(code, gccOptions);

};

Listing 3.3: The compile function, executed when the “Run It” button is
clicked or the editor keyboard shortcut is used

36

www.manaraa.com

LiveEdit.prototype.runCode = function (code, gccOptions) {

// check for valid code input

if (code.length === 0

|| code.indexOf('\x03') >= 0

|| code.indexOf('\x04') >= 0) {

return;

}

var callback = this.processGccCompletion.bind(this);

this.viewModel.compileStatus('Compiling');

this.runtime.startGccCompile(code, gccOptions, callback);

};

Listing 3.4: The runCode function

37

www.manaraa.com

SysRuntime.prototype.startGccCompile =

function (code, gccOptions, guiCallback) {

// ensure the VM has finished booting

if (!this.bootFinished) { return 0; }

// remove callbacks for any previous compilations

if (this.expecting) { this.expecting.cancel(); }

this.ttyOutput = '';

this.captureOutput = true;

++this.compileTicket;

// delete existing source file and executable,

// if present

this.sendKeys('tty0',

'\x03\ncd ~;rm program.c program 2>/dev/null\n');

this.sendTextFile('program.c', code);

var cmd = 'echo \\#\\#\\#GCC_COMPILE\\#\\#\\#;clear;gcc '

+ gccOptions

+ ' program.c -o program; echo GCC_EXIT_CODE: $?;'

+ ' echo \\#\\#\\#GCC_COMPILE_FINISHED\\#\\#\\#'

+ this.compileTicket + '.;clear\n';

this.expecting = this.sendKeys('tty0',

cmd,

'GCC_COMPILE_FINISHED###' + this.compileTicket + '.',

compileCb);

return this.compileTicket;

};

Listing 3.5: The startGccCompile function, which invokes the actual gcc
command

38

www.manaraa.com

SysRuntime.prototype.sendTextFile =

function (filename, contents) {

this.sendKeys('tty0',

'\nstty raw\ndd ibs=1 of=' + filename

+ ' count=' + contents.length + '\n' + contents

+ '\nstty -raw\n');

};

Listing 3.6: The sendTextFile function, used to write text data to a file
inside the VM (using the dd command)

###GCC_COMPILE###

program.c: In function 'main':

program.c:5:5: warning: implicit declaration of function

'printf' [-Wimplicit-function-declaration]↪→

printf("Hello world!\n");

^

program.c:5:5: warning: incompatible implicit declaration of

built-in function 'printf'↪→

GCC_EXIT_CODE: 0

###GCC_COMPILE_FINISHED###1.

Listing 3.7: An example of the terminal output captured after
startGccCompile sends the compilation command (some text has been
stripped from the beginning to show the relevant part)

39

www.manaraa.com

this.gccOutputCaptureRe =

/###GCC_COMPILE###\s*([\S\s]*?)\s*###GCC_COMPILE_FINISHED###/;

this.gccExitCodeCaptureRe = /GCC_EXIT_CODE: (\d+)/;

// called when GCC has exited

var compileCb = function (completed) {

var result = null;

this.expecting = undefined;

if (completed) {

this.captureOutput = false;

// get the GCC output text

var regexMatchArray =

this.gccOutputCaptureRe.exec(this.ttyOutput);

var gccOutput = regexMatchArray[1];

// get the GCC process' exit code

var gccExitCode = parseInt(

this.gccExitCodeCaptureRe.exec(gccOutput)[1]);

this.ttyOutput = '';

// ...

// parse GCC output, then get stats

// (error/warning counts) and editor annotations

// (markings of lines with errors/warnings in file)

// ...

result = { exitCode: gccExitCode,

stats: stats,

annotations: annotations,

gccOutput: gccOutput };

}

guiCallback(result);

}.bind(this);

Listing 3.8: The compileCb function, called after the gcc process has exited

40

www.manaraa.com

LiveEdit.prototype.processGccCompletion = function (result) {

// result = { 'exitcode':gcc_exit_code,

// 'stats':stats,

// 'annotations':annotations,

// 'gcc_ouput':gcc_output }

// OR null if compilation was cancelled

this.viewModel.gccErrorCount(0);

this.viewModel.gccWarningCount(0);

if (!result) {

// cancelled

this.viewModel.compileStatus('Cancelled');

return;

}

// clear the terminal

this.runtime.sendKeys('tty0', 'clear\n');

// ... update UI with the results ...

if (result.exitCode === 0) {

this.viewModel.compileStatus(

result.stats.warning > 0 ? 'Warnings':'Success');

this.runtime.startProgram('program',

this.viewModel.programArgs());

} else {

this.viewModel.compileStatus('Failed');

}

};

Listing 3.9: The processGccCompletion function, called after gcc output
has been parsed and error/warning information has been extracted

41

www.manaraa.com

SysRuntime.prototype.startProgram =

function (filename, cmdargs) {

if (!filename) {

return;

}

// escape strings

if (filename[0] !== '/' && filename[0] !== '.') {

filename = './' + filename.replace(' ', '\\ ');

}

cmdargs = cmdargs

.replace('\\', '\\\\')

.replace('\n', '\\n');

this.sendKeys('tty0',

'\n' + filename + ' ' + cmdargs + '\n');

};

Listing 3.10: The startProgram function, used to execute a program;
invoked after a successful compilation

42

www.manaraa.com

CHAPTER 4

RESULTS AND ANALYSIS

This chapter describes several metrics pertaining to the usage and perfor-

mance of the application, with the goal of providing useful information to

someone looking to use and/or deploy the application for their own purpose.

4.1 Jor1k Performance Comparison

The jor1k project has documented the results of a benchmark performed in

September 2015 comparing the performances of jor1k and two other popular

JavaScript-based emulators [40]. This section describes the benchmark and

analyses its results.

It is important to note that the benchmark and results below are taken

verbatim from jor1k’s documentation, and are assumed to be accurate. No

attempt was made to reproduce the benchmark results for the purpose of

this thesis. As such, these results should not be considered as the output

of rigorous research, but instead should only be used as anecdotal evidence.

However, the results are in complete agreement with our own experience with

the benchmarked systems.

4.1.1 Host System

The benchmark was performed on a system with the following characteristics:

Processor Intel R© CoreTM2 Duo E8400 3.0 GHz

Operating System Windows 10

43

www.manaraa.com

Web browser Mozilla Firefox 41.0

4.1.2 Benchmarked Systems

The following three systems were benchmarked:

1. jor1k running Linux 4.1 and Busybox

2. jslinux running Linux 2.6.20 and Busybox1

3. v86 running Linux 4.0 and GNU packages (gzip and bzip2) from Arch-

linux2

4.1.3 Benchmark Tests

The following three tests were run on each of the systems being benchmarked,

and the time taken to execute each test was recorded:

1. Generate a file containing 1 MiB of random data, using the command:

dd if=/dev/urandom of=file bs=1M count=1.

2. Compress the file generated in Test 1 using the gzip program.

3. Compress the file generated in Test 1 using the bzip2 program.

Each test was executed several times on a given system, but only the lowest

measured timing for that test and system combination was included in the

results.

4.1.4 Results

Figure 4.1 shows the results of the benchmark. As is clear from the figure,

jor1k is considerably faster than both jslinux and v86.

1http://bellard.org/jslinux/
2http://copy.sh/v24/

44

www.manaraa.com

Figure 4.1: Comparison of the running times of various benchmark tests
run on popular JS-based emulators (smaller values are better)

4.2 File Size Statistics

The total size (“weight”) of a web application is an important factor to

consider when deciding its suitability for a given use case. Applications

needing to download large files can create accessibility barriers for users with

limited/low bandwidth Internet connections, although the caching performed

by web browsers can reduce this impact significantly.

For the web application developed in this project, Table 4.1 shows the list

of files downloaded by the browser over a duration spanning from the time

the user visits the application, to the time when a simple C program (shown

in Listing 4.1) has been compiled and run. The type of a request or file

retrieved is mentioned next to the file name, along with its size.

The table was generated from network requests captured using Chrome

DevTools, a set of web authoring and debugging tools built into the Google

Chrome web browser (in particular, Chrome 64-bit Version 47.0.2526.106 was

45

www.manaraa.com

used). Caching was disabled so that requests could be captured accurately.

Data URLs are not included in the table, as they are always retrieved from

the cache. It should be noted that the size column in the table refers to the

sizes of the actual data transferred “over the wire”, which contains response

headers along with the content. This data may or may not be compressed,

and hence the sizes shown are not the same as the sizes of the files themselves.

The number of bytes downloaded on the network is shown because it is more

relevant for determining the accessibility of a web application.

Jor1k loads parts of the filesystem on demand, which can be seen as XHR

requests (such as downloading clear.bz2 when the clear command is used).

Due to this “lazy loading”, it is not possible to provide an upper limit on the

total size of files downloaded by the application. For example, compilation

of a C program which includes a header file not already loaded will result

in an additional download of the header file, along with its dependencies.

However, the bulk of the total download size consists of files required for

any compilation (such as the Linux kernel and the compiler), which means

that the total download size should not significantly exceed the total size

mentioned in Table 4.1.

Table 4.1: Network Requests Made from Page Load to Program Execution
(in Chronological Order)

Name Type Size

sys/ document 4.4 KiB

aa065ef4.vendor.css stylesheet 7.3 KiB

a3077974.main.css stylesheet 24.4 KiB

775af888.modernizr.js script 4.3 KiB

a4093255.imark_bold.gif gif 1.4 KiB

7e11eee2.vendor.js script 330 KiB

09c083e1.plugins.js script 11.1 KiB

a1ebcd5e.main.js script 20.4 KiB

analytics.js script 11.0 KiB

glyphicons-halflings-regular.woff2 font 18.2 KiB

jor1k-worker-min.js script 79.6 KiB

sys_man_page_index.min.json xhr 25.9 KiB

sys_man_page_index.min.json xhr 25.9 KiB

Continued on next page

46

www.manaraa.com

Table 4.1 – continued from previous page

Name Type Size

sys.min.json xhr 1.8 KiB

transcription_index.min.json xhr 53.4 KiB

notific8.woff font 29.6 KiB

Google Analytics page view gif 373 B

vmlinux.bin.bz2 xhr 2.0 MiB

basefs-compile.json xhr 1.1 KiB

busybox.bz2 xhr 612 KiB

nsswitch.conf xhr 715 B

group xhr 626 B

fstab xhr 770 B

inittab xhr 830 B

host.conf xhr 668 B

inetd.conf xhr 690 B

passwd xhr 734 B

interfaces xhr 659 B

rcS-compile xhr 1.5 KiB

services xhr 19.0 KiB

profile-compile xhr 613 B

default.script xhr 1.8 KiB

fs.json xhr 40.0 KiB

gcc.bz2 xhr 317 KiB

as.bz2 xhr 130 KiB

libmenu.so.5.9.bz2 xhr 14.7 KiB

libncurses.so.5.9.bz2 xhr 149 KiB

libbfd-2.24.51.20140817.so.bz2 xhr 294 KiB

libc.so.bz2 xhr 384 KiB

libgcc_s.so.1.bz2 xhr 137 KiB

stdio.h xhr 5.7 KiB

Google Analytics page view gif 386 B

clear.bz2 xhr 2.3 KiB

cc1.bz2 xhr 4.2 MiB

libz.so.1.2.8.bz2 xhr 42.6 KiB

Continued on next page

47

www.manaraa.com

Table 4.1 – continued from previous page

Name Type Size

features.h xhr 1.3 KiB

alltypes.h xhr 10.4 KiB

libopcodes-2.24.51.20140817.so.bz2 xhr 48.3 KiB

collect2.bz2 xhr 232 KiB

ld.bfd.bz2 xhr 147 KiB

crt1.o.bz2 xhr 1.9 KiB

crti.o.bz2 xhr 866 B

crtbegin.o.bz2 xhr 2.1 KiB

libm.a xhr 602 B

libgcc.a.bz2 xhr 165 KiB

crtend.o.bz2 xhr 1.3 KiB

crtn.o.bz2 xhr 836 B

Total number of requests: 57 Total size: 9.5 MiB

#include <stdio.h>

int main() {

printf("Hello world!\n");

return 0;

}

Listing 4.1: The C program compiled while network requests were being
captured

4.3 Usage and Adoption

The web application uses Google Analytics [41] for tracking various impor-

tant metrics related to its usage.

Figure 4.2 graphs (in blue) the total number of sessions3 on the Produc-

tion application (https://cs-education.github.io/sys) per week from

3A session is the period of time a user is actively engaged with the website.

48

www.manaraa.com

January 1, 2015, to November 30, 2015.

The figure also shows (in orange) the number of sessions originating from

a desktop/laptop computer located in either Champaign or Urbana.4 These

sessions should be fairly representative of UIUC students visiting the appli-

cation. As can be seen from the figure, these sessions represent a majority

of the total sessions.

An interesting pattern to note is that the number of sessions is high at

the beginning of the academic semesters at UIUC (the beginnings of the

Spring 2015 and Fall 2015 semesters are marked in the figure), and very

low in the period between the end of Spring semester (also marked) and

the beginning of Fall semester, which corresponds to the summer break.

Professor Angrave introduces the application to the new batch of CS 241

students at the beginning of each semester, which could probably have caused

this pattern of usage.

Figure 4.2: Total number of sessions (blue) on the Production website and
number of desktop sessions from Champaign-Urbana (orange) from January
1, 2015, to November 30, 2015

Figure 4.3 shows a few more metrics related to user engagement on the

Production website, for the same date range as Figure 4.2. Further analysis

is required to be able to extract meaningful insight out of this information,

which is beyond the scope of this thesis.

4The UIUC campus is located in the Champaign and Urbana twin-cities.

49

www.manaraa.com

Figure 4.3: Several key Google Analytics metrics for the Production
website from January 1, 2015, to November 30, 2015

50

www.manaraa.com

CHAPTER 5

IMPROVEMENTS AND SUGGESTIONS

This chapter provides a few suggestions for making the project more useful

as a learning tool.

5.1 Automatic Grading of Student Code

The tool will become more useful if it can provide some feedback on code

written by a student. One way of providing feedback is to automatically

evaluate, analyze, and grade the code. Compared to manual review by an

instructor, this provides instant feedback and is more scalable and practi-

cal. There are quite a few possible options for performing such automated

assessment.

A simple and effective way is to check the compiled program’s output, for

a given set of inputs, to see if it matches the expected output. The output

of a program consists of text printed on the screen (stdout or stderr), data

written to files on the disk, data sent through a socket, etc. Likewise, the

input of a program consists of arguments passed through the command line,

text entered on stdin, data read from files on the disk, data received through

a socket, etc.

Deeper insight into the student’s code can be gained by tracking whether

the right library or system calls have been made, and with the right param-

eters. This can be done using the ltrace or strace Linux utilities.

Tischer [42] lists more ways of automatically assessing student code, includ-

ing static analysis and symbolic execution, and discusses some approaches

for improving the current methods.

51

www.manaraa.com

5.2 Event Tracking and Analytics

Currently, the number of page views is tracked and analyzed, as detailed in

Section 4.3. However, it is difficult to see how students are actually using the

application, and whether they are benefiting from it, based on page views

alone. A lot of insight can be gained by tracking and analyzing a user’s be-

havior and actions taken inside the web application. The application’s ease

of deployment and its potentially wide reach open up many exciting research

opportunities for answering questions such as how and where students are us-

ing this tool, the effectiveness of this tool compared to traditional classrooms,

and more.

The following sub-sections list some interesting events to track, and the

potential analytical insights they can provide.

5.2.1 Video Views

Here are some example events that can be tracked when a user watches a

lecture video: “video played”, “25% video viewed”, “50% video viewed”,

“75% video viewed”, and “100% video viewed”.

These events can provide information such as the percentage of users who

watch a given lecture video to completion, the average length of a given

lecture video seen before users move on to the corresponding exercise, etc.

This information can be used to evaluate the quality of lectures, identify

topics which need more explanation, and more.

5.2.2 Number of Code Compilations

Some sample metrics to keep track of: Number of times a user initiates a

compilation, amount of time each compilation takes, number of successful

compilations, number of compilations with warnings, and so on.

Based on these metrics, one could find, for example, the average number

of mistakes made by a user when writing a program.

52

www.manaraa.com

CHAPTER 6

CONCLUSION

The project described in this thesis started out as an experiment to see if it

was possible to compile and run C programs completely in the browser, and

whether speeds acceptable for practical use could be achieved. We found not

only that this is possible, but also that the performance and functionality

obtained are more than sufficient for teaching system programming. Based

on this encouraging result, we grew the prototype built for the experiment

into a full-fledged learning environment, as described in this thesis. The

original prototype still exists as one of the demos forming part of the jor1k

project.1

The goal of this project is to develop a tool useful for teaching system pro-

gramming in self-paced courses as well as in classrooms, and to demonstrate

ways to improve how system programming is taught. Even though a lot of

work still needs to be done, the tool developed so far, as described in the

thesis, is fairly close to fulfilling this goal. We envision the project as a core

part not just of CS 241, but of university-level system programming courses

across the globe.

1https://s-macke.github.io/jor1k/demos/compile.html

53

www.manaraa.com

REFERENCES

[1] “CS 492/493/494 Senior Projects,” 2015, Department of Computer
Science, UIUC. [Online]. Available: https://seniorprojects.cs.illinois.
edu/

[2] “CS 241 (Fall 2015) Course homepage,” 2015, Department of Computer
Science, UIUC. [Online]. Available: https://courses.engr.illinois.edu/
cs241/fa2015/

[3] L. Angrave, N. Gupta, S. Walters, E. Ahn, J. Tran, A. K. Singh,
and S. Seth, “sysbuild v0.16.0,” Nov. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.35683

[4] S. Macke, N. Gupta, B. Burns, J. Bölsche, G. Braad, J. Troelsen,
S. Kristiansson, hak8or, J. Goense, Fabian, and E. M. Hvidevold,
“jor1k dependency for sysbuild-v0.16.0,” Apr. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.35684

[5] “CS 241 official course profile,” 2015, Department of Computer
Science, UIUC. [Online]. Available: https://cs.illinois.edu/courses/
profile/CS241

[6] “Learn C — Free Interactive C Tutorial,” 2015. [Online]. Available:
https://www.learn-c.org/

[7] “Ideone — Online compiler and IDE,” 2015. [Online]. Available:
https://ideone.com/

[8] “Code Moo — A playful way to learn programming,” 2015. [Online].
Available: http://www.codemoo.com/

[9] “Codecademy, free interactive code learning online,” 2015. [Online].
Available: http://www.codecademy.com/

[10] “Code School,” 2015. [Online]. Available: https://www.codeschool.
com/

[11] “Khan Academy,” 2015. [Online]. Available: https://www.
khanacademy.org/

54

www.manaraa.com

[12] L. Angrave, “System Programming wiki-book,” 2015, Community-
built Wiki. [Online]. Available: https://github.com/angrave/
SystemProgramming/wiki

[13] “CS 241 (Fall 2015) MP7 — Wearables,” 2015, Department of
Computer Science, UIUC. [Online]. Available: https://courses.engr.
illinois.edu/cs241/fa2015/mps/mp7/

[14] “CS 241 (Spring 2014) MP7 — Web Server,” 2014, Department of
Computer Science, UIUC. [Online]. Available: https://courses.engr.
illinois.edu/cs241/sp2014/mp/mp7 skeleton/doc/html/

[15] “GitHub,” 2015. [Online]. Available: https://github.com/

[16] “The Git version control system,” 2015. [Online]. Available: https:
//git-scm.com/

[17] “The cs-education organization on GitHub,” 2015. [Online]. Available:
https://github.com/cs-education

[18] “cs-education/sysbuild on GitHub,” 2015, cs-education. [Online].
Available: https://github.com/cs-education/sysbuild

[19] “cs-education/sysassets on GitHub,” 2015, cs-education. [Online].
Available: https://github.com/cs-education/sysassets

[20] “cs-education/sys-staging on GitHub,” 2015, cs-education. [Online].
Available: https://github.com/cs-education/sys-staging

[21] “cs-education/sys on GitHub,” 2015, cs-education. [Online]. Available:
https://github.com/cs-education/sys

[22] “cs-education/jor1k on GitHub,” 2015, cs-education. [Online]. Avail-
able: https://github.com/cs-education/jor1k

[23] “The Yeoman scaffolding tool,” 2015. [Online]. Available: http:
//yeoman.io/

[24] “The Yeoman “Webapp” Generator,” 2015. [Online]. Available:
https://github.com/yeoman/generator-webapp

[25] “The Bootstrap Framework,” 2015. [Online]. Available: https:
//getbootstrap.com/

[26] “The Grunt JavaScript Task Runner,” 2015. [Online]. Available:
http://gruntjs.com/

[27] “The Bower package manager,” 2015. [Online]. Available: http:
//bower.io/

[28] “The Sass CSS preprocessor,” 2015. [Online]. Available: http:
//sass-lang.com/

55

www.manaraa.com

[29] S. Macke and contributors, “s-macke/jor1k on GitHub,” 2015. [Online].
Available: https://github.com/s-macke/jor1k

[30] “GitHub Pages,” 2015. [Online]. Available: https://pages.github.com/

[31] “Improvements to GitHub Pages,” 2015, GitHub Blog. [Online]. Avail-
able: https://github.com/blog/1715-faster-more-awesome-github-pages

[32] “The jQuery library,” 2015. [Online]. Available: https://jquery.com/

[33] “The jQuery UI Layout plugin,” 2015. [Online]. Available: https:
//github.com/allpro/layout

[34] “The Knockout JavaScript library,” 2015. [Online]. Available:
http://knockoutjs.com/

[35] “The Sammy.js web framework,” 2015. [Online]. Available: http:
//sammyjs.org/

[36] “The Ace embeddable code editor,” 2015. [Online]. Available:
https://ace.c9.io/

[37] S. Macke and contributors, “jor1k,” 2015. [Online]. Available:
http://jor1k.com/

[38] OpenRISC 1000 Architecture Manual, Architecture Version 1.1, Open-
Cores, Apr. 2014.

[39] S. Macke, “jor1k — Technical details,” 2015, Wiki. [Online]. Available:
https://github.com/s-macke/jor1k/wiki/Technical-details

[40] S. Macke, “jor1k — Benchmark with other emulators,” 2015,
Wiki. [Online]. Available: https://github.com/s-macke/jor1k/wiki/
Benchmark-with-other-emulators

[41] “Google Analytics,” 2015. [Online]. Available: https://www.google.
com/analytics/

[42] M. A. Tischer, “Improving the Assessment of Student Code,”
ECE Undergraduate Senior Thesis, University of Illinois at Urbana-
Champaign, Urbana, Illinois, May 2013, unpublished. [Online].
Available: http://hdl.handle.net/2142/47619

56

